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Abstract

We propose, in bihamiltonian formalism, a version of the Toda lattice hierarchy that is satisfied
by the two point correlation functions of theCP1 topological sigma model at genus one approxima-
tion, and we also show that this bihamiltonian hierarchy is compatible with the Virasoro constraints
of Eguchi–Hori–Xiong up to genus two approximation. © 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Consider a 2D topological field theory (TFT) obtained by the coupling of a matter sector to
topological gravity. We denote byφ1 = 1, φ2, . . . , φn the primary fields of the matter sector,
and byτp(φα), p ≥ 1,α = 1, . . . , n with τ0(φα) = φα their gravitational descendents, the
corresponding coupling constants are denoted bytα,p. Then in the genus expansion form
the free energyF(t) of the 2D TFT is expressed as

F(t) =
∑
g≥0

ε2g−2Fg(t)

with the genusg free energyFg defined as the generating function of the genusg correlators

Fg(t) = 〈e
∑
tα,pτp(φα)〉g.

E-mail address:yzhang@math.tsinghua.edu.cn (Y. Zhang).

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(01)00036-5



216 Y. Zhang / Journal of Geometry and Physics 40 (2002) 215–232

If, we restrict the genus zero free energy to the small phase space

tα,0 = vα, tα,p = 0, p ≥ 1,

we get the primary free energyF(v) of the 2D TFT. The primary free energy satisfies a
remarkable system of differential equations — the WDVV associativity equations [2,26]
which is the base of the theory of Frobenius manifold [4,6]. From the theory of Frobenius
manifold, we know that the genus zero free energyF0 of a 2D TFT can be reconstructed from
its primary free energy [5,6], the procedure of reconstruction is described by a bihamiltonian
hierarchy of integrable systems called the genus zero bihamiltonian hierarchy, and the genus
zero free energy is a particularτ function of this hierarchy. For a 2D TFT with all massive
perturbations it has been shown that the genus one free energy can also be reconstructed
from the primary free energy through certain deformation of the genus zero bihamiltonian
hierarchy [7]. These facts strongly supports our belief that the full genera free energy of
any 2D TFT with all massive perturbations should also be a specialτ function of certain
bihamiltonian hierarchy of integrable systems. This nice picture is realized for the case of
pure gravity by the theory of Kontsevich [20] and Witten [27,28], in this case the hierarchy
of integrable systems is the well known KdV hierarchy. For a 2D TFT with nontrivial matter
sector, however, the hypothetical integrable hierarchy is unknown, the only general result
regarding these hierarchies is the explicit expression of their genus one approximation [7].
Nonetheless, there are some conjectures regarding the form of the full genera integrable
hierarchy for some particular 2D TFT such as the topological minimal models and the
CP1 topological sigma model [2,4,10–12]. The relation between theCP1 topological sigma
model and bihamiltonian hierarchy of integrable systems is the subject of this note.

The integrable hierarchy that should control theCP1 topological sigma model was con-
jectured in [4] to be the Toda lattice hierarchy. In [10–12], it was proved that the conjecture
is valid at the genus zero approximation for an appropriate version of the Toda lattice hierar-
chy, and attempts were also made to check the validity of the conjecture at the genus one and
genus two approximation by considering the deformation of the genus zero hierarchy based
on the condition of commutativity among the deformed flows. However, since this commu-
tativity condition does not determine the flows uniquely, the genus two approximated flows
given in [11] that is supposed to be satisfied by the two point correlation functions of the
CP1 topological sigma model is not proper already in the genus one term, this corresponds
to the missing of the Getzler function in the genus one free energy [7,17]. On the other hand,
the recursion relations among the flows of the Toda lattice hierarchy that is represented in
Lax pair formalism in [11] are not manifestly given, and the appearance of the logarithm
of an operator in the Lax pairs makes it already quite nontrivial to give an approximated
form of the first set of flows of the hierarchy. The purpose of this note is to propose, in a
more explicit form, a version of the Toda lattice hierarchy that is expected to be satisfied by
the two point correlation functions of theCP1 topological sigma model. This version of the
Toda lattice hierarchy is expressed in bihamiltonian formalism, and the recursion relations
among the flows of the hierarchy are manifestly given by the bihamitonian structure. At the
genus one approximation, this hierarchy is verified to be satisfied by the two point corre-
lation functions of theCP1 topological sigma model, and at the genus two approximation,
we prove that this bihamiltonian hierarchy is compatible with the Virasoro constraints that
is conjectured to be valid in [14] by Eguchi et al., the precise meaning of this compatibility
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will be clear in Section 2, where we first recall the genus one approximated bihamiltonian
hierarchy that is satisfied by the two point correlation functions of theCP1 topological
sigma model, and then give the genus two correction of the hierarchy by assuming the
validity of the Virasoro conjecture [14] at the genus two approximation. In Section 3, we
present a version of the bihamiltonian Toda lattice hierarchy, and in Section 4 we define a
Miura transformation that establishes the relation between the dynamical variables of the
Toda lattice hierarchy and the two point correlation functions of theCP1 topological sigma
model, and show that at the genus two approximation (i.e., up toε4) the bihamiltonian Toda
lattice hierarchy coincides with the bihamiltonian hierarchy introduced in Section 2 for the
CP1 topological sigma model.

2. The genus two approximated bihamiltonian hierarchy for the CP1 topological
sigma model

In the notation of the last section, the primary free energy of theCP1 topological sigma
model [3,26] has the expression

F = 1
2(v

1)2v2 + ev
2
.

The genus zero free energy is a specialτ function of a bihamiltonian hierarchy of hydro-
dynamic type integrable systems, there is a general procedure to construct this hierarchy
starting from any solution of the WDVV associativity equations (or a Frobenius manifold)
[6], the bihamiltonian structure is defined on the loop space of the Frobenius manifold, and
the Hamiltonians of the hierarchy are defined by the flat coordinates of a deformed flat
connection of the Frobenius manifold. For our special case of theCP1 topological sigma
model, the bihamiltonian structure is given by

{v1(x), v1(y)}1 = {v2(x), v2(y)}1 = 0, {v1(x), v2(y)}1 = δ′(x − y),

{v1(x), v1(y)}2 = 2 ev
2(x)δ′(x − y)+ v2

x ev
2(x)δ(x − y),

{v1(x), v2(y)}2 = v1(x)δ′(x − y), {v2(x), v2(y)}2 = 2δ′(x − y). (2.1)

Let us denote by(ηαβ) the inverse of the matrix(ηαβ) with elements

ηαβ = ∂3F

∂v1∂vα∂vβ
,

and denote

cξγ ν = ηξσ
∂3F

∂vγ ∂vν∂vσ
,

here and henceforth summation over the repeated indices is assumed. Then, the Hamilto-
nians

Hβ,q =
∫
θβ,q+1(v(x))dx, α = 1,2, q ≥ −1



218 Y. Zhang / Journal of Geometry and Physics 40 (2002) 215–232

are defined by the relations

θ1,0 = v2, θ2,0 = v1,
∂2θβ,q+1

∂vγ ∂vν
= cξγ ν

∂θβ,q

∂vξ
, α, β = 1,2, q ≥ 0,

∂Eθβ,q = (q + 1
2 + µβ)θβ,q + 2δβ,1θ2,q−1, (2.2)

whereµ1 = −1
2, µ2 = 1

2 and the Euler vector fieldE is given by

E = v1 ∂

∂v1
+ 2

∂

∂v2
.

For example, we have

θ1,1 = v1v2, θ2,1 = 1
2(v

1)2 + ev
2
, θ1,2 = 1

2(v
1)2v2 + v2 ev

2 − 2 ev
2
,

θ2,2 = 1
6(v

1)3 + v1 ev
2
. (2.3)

The genus zero bihamiltonian hierarchy for theCP1 topological sigma model is defined to
be

∂vα

∂tβ,q
= {vα(x),Hβ,q}1, α, β = 1,2, q ≥ 0, (2.4)

since(∂vα/∂t1,0) = ∂xv
α, we identify the time variablet1,0 with the spatial variablex.

This hierarchy satisfies the following bihamiltonian recursion relations [6,7,13]

{vα(x),Hβ,q−1}2 = (q + µβ + 1
2){vα(x),Hβ,q}1 + R

γ
β {vα(x),Hγ,q−1}1,

α, β = 1,2, q ≥ 0, (2.5)

here

R1
1 = R1

2 = R2
2 = 0, R2

1 = 2. (2.6)

Whenβ = 1, the above recursion procedure starts fromq = 1.
The genus zero two point correlation functions

ηαγ
∂2F0(t)

∂t1,0∂tγ,0
, α = 1,2 (2.7)

give a particular solutionv(0)(t) of the above hierarchy, this solution is specified by the
initial condition

v(0)
α

(t)|tβ,q≥1=0 = tα,0 (2.8)

and by the symmetry reduction

∂v(0)

∂t1,1
−
∑
α,p

tα,p
∂v(0)

∂tα,p
= 0 (2.9)

which leads, in particular, to the string equation.
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Now, let us look at the genus one approximation of theCP1 topological sigma model.
The genus one free energy is given by [3,7,17]

F1(t) = F1(v, vx)|v=v(0)(t), vx=∂xv(0)(t)
with

F1 = 1
24 log det(cαβγ v

γ
x )− 1

24v
2,

it was shown in [7] that the genus one two point correlation functions

∂2F0(t)

∂t1,0∂tα,0
+ ε2 ∂2F1(t)

∂t1,0∂tα,0
+O(ε4)

satisfy a bihamiltonian hierarchy, which is a deformation of the genus zero hierarchy (2.4)
obtained by the following transformation:

uα = vα + ε2ηαγ
∂2F1(v, vx)

∂t1,0∂tγ,0
. (2.10)

The deformed hierarchy has the bihamiltonian structure

{uα(x), uβ(y)}i = {uα(x), uβ(y)}(0)i + ε2{uα(x), uβ(y)}(1)i +O(ε4), (2.11)

where{uα(x), uβ(y)}(0)i are defined by (2.1) withv1, v2 replaced byu1, u2, and

{u1(x), u1(y)}(1)1 = {u2(x), u2(y)}(1)1 = 0, {u1(x), u2(y)}(1)1 = − 1
12δ

′′′(x − y),

{u1(x), u1(y)}(1)2 = eu
2(x)(1

6δ
′′′(x − y)+ 1

4u
2
xδ

′′(x − y)+ ( 1
12(u

2
x(x))

2

+1
4u

2
xx)δ

′(x − y)+ ( 1
12u

2
x u

2
xx + 1

12u
2
xxx)δ(x − y)),

{u1(x), u2(y)}(1)2 = − 1
12u

1(x)δ′′′(x − y)− 1
12u

1
x δ

′′(x − y),

{u2(x), u2(y)}(1)2 = 0. (2.12)

We note here the remarkable property of the deformed bihamiltonian structure (2.11) and
(2.12) that it is given by differential polynomials inuαx , u

α
xx, . . . , this property is rather

nontrivial because our Miura type transformation (2.10) is given by rational instead of
polynomial functions invαx , v

α
xx, . . . . We call such transformationsquasi-Miura transfor-

mationsin [9].
The Hamiltonians of the deformed hierarchy

∂uα

∂tβ,q
= {uα(x),Hβ,q}1 (2.13)

is obtained from the genus zero ones by transforming thevα coordinates to theuα coordi-
nates, the densities of the Hamiltonians can be chosen as polynomials in thex-derivatives
of the new coordinates. An explicit formula of such a choice was given in [7] for a general
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semisimple Frobenius manifold. For theCP1 topological sigma model we have, e.g.,

Hβ,−1 =
∫
ηβγ u

γ (x)dx +O(ε4), β = 1,2,

H1,0 =
∫
θ1,1(u(x))dx − ε2

∫
1

12
u1
x(x)u

2
x(x)dx +O(ε4),

H2,0 =
∫
θ2,1(u(x))dx−ε2

∫ (
1

24
(u1
x)

2+ 1

12
(u2
x)

2 eu
2(x)

)
dx +O(ε4), (2.14)

Let us consider now the genus two approximation of theCP1 topological sigma model. It
was conjectured in [14] that the partition function of a topological sigma model should be
annihilated by an infinite set of Virasoro operators, this conjecture was proved to be valid at
the genus zero approximation [8,22], and for any topological sigma model with semisimple
quantum cohomology this conjecture was also proved to be true at genus one approximation
[8,23]. In particular, the genus zero and genus one free energy of theCP1 topological sigma
model satisfy the genus one Virasoro constraints. It was also conjectured in [15] that, as for
the genus one free energy, the higher genera free energy could be expressed as a function
of the genus zero correlation functions in the form

Fg(t) = Fg(v, vx, . . . , ∂
3g−2
x v)|v=v(0)(t). (2.15)

In [9], it was shown that the genus two Virasoro constraints lead to a unique solutionF2
of the above form for any generic two-dimensional Frobenius manifold, and the explicit
expression ofF2 were given there. A similar derivation of the genus two free energy for
two-dimensional Frobenius manifold is also given in [16] by using the above form ofF2(t),
the genus two Virasoro constraints and the genus two topological recursion relations [1,18].
To write down the explicit formula of the functionF2, let us denote

Vα1,...,αk = ηα1γ

∂k−1vγ

∂tα2,0 · · · ∂tαk,0 , k = 1,2, . . . ,

Q1 = V1,α1,α2,α3,α4(M
−1)α1α2(M−1)α3α4,

Q2 = V1,α1,α2,α3Vα4,α5,α6(M
−1)α1α4(M−1)α2α5(M−1)α3α6,

Q3 = V1,α1,α2Vα3,α4,α5,α6(M
−1)α1α3(M−1)α2α4(M−1)α5α6,

Q4 = V1,α1,α2Vα3,α4,α5Vα6,α7,α8(M
−1)α1α3(M−1)α2α6(M−1)α4α7(M−1)α5α8,

Q5 = V1,α1,α2

∂2G

∂tα3,0∂tα4,0
(M−1)α1α3(M−1)α2α4,

Q6 = ∂3G

∂t1,0∂tα1,0∂tα2,0
(M−1)α1α2,

where

(M−1)αβ = (M−1)αγ η
γβ, (Mα

β ) = (cαβγ v
γ
x )

and

G = − 1
24v

2.
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With these notations, the genus two free energy for theCP1 topological sigma model is
given by

F2 = 1
1152Q1 − 1

360Q2 − 1
1152Q3 + 1

360Q4 − 11
240Q5 + 1

20Q6 + 7
5760v

2
xx.

Being a unique solution of the form (2.15) to the genus two Virasoro constraints,F2 also
satisfies the genus two topological recursion relations given in [1,18]. In [9], it was proved
that, at the approximation up toε4, the two point correlation functions

∂2F0(t)

∂t1,0∂tα,0
+ ε2 ∂2F1(t)

∂t1,0∂tα,0
+ ε4 ∂2F2(t)

∂t1,0∂tα,0
+O(ε6)

also satisfy a bihamiltonian hierarchy of integrable systems, which is a deformation of the
genus zero one (2.4), under the following quasi-Miura transformation:

uα = vα + ε2ηαγ
∂2F1(v, vx)

∂t1,0∂tγ,0
+ ε4ηαγ

∂2F2(v, vx, . . . , ∂
4
x v)

∂t1,0∂tγ,0
. (2.16)

The bihamiltonian structure is given by

{uα(x), uβ(y)}i = {uα(x), uβ(y)}(0)i + ε2{uα(x), uβ(y)}(1)i
+ε4{uα(x), uβ(y)}(2)i +O(ε6), (2.17)

where{uα(x), uβ(y)}(0)i , {uα(x), uβ(y)}(1)i are defined as in (2.11) and (2.12), and

{u1(x), u1(y)}(2)1 = {u2(x), u2(y)}(2)1 = 0, {u1(x), u2(y)}(2)1 = 1
240δ

(5),

{u1(x), u1(y)}(2)2 = eu
2(x)

[
− 1

360δ
(5) − 1

144u
2
xδ
(4) + 1

180u
2
xxδ

′′′ − 1
120(u

2
x)

2δ′′′

+ 11
720u

2
xxxδ

′′ + 1
240u

2
xxu

2
xδ

′′ − 1
180(u

2
x)

3δ′′ + 1
90∂

4
xu

2δ′

+ 1
120u

2
xxxu

2
xδ

′ + 7
720(u

2
xx)

2δ′ − 1
720u

2
xx(u

2
x)

2δ′ − 1
720(u

2
x)

4δ′

+
(

1
288u

2
x(u

2
xx)

2 + 1
360u

2
x∂

4
xu

2 + 1
144u

2
xxu

2
xxx + 1

360∂
5
xu

2
)
δ
]
,

{u1(x), u2(y)}(2)2 = 1
240u

1(x)δ(5) + 1
120u

1
xδ
(4) + 1

180u
1
xxδ

′′′ + 1
720u

1
xxxδ

′′,

{u2(x), u2(y)}(2)2 = − 1
120δ

(5), (2.18)

here we omitted, to save spaces, the argumentsx–y of theδ function and its derivatives.
We remark here again that the quasi-Miura transformation (2.16) is given by complicated

rational functions in thex-derivatives of thevα variables, however, the resulting deformation
of the bihamiltonian structure is polynomial in thex-derivatives of the new dependent
variablesuα (at the approximation up toε4). In [9], we call such deformation of the genus
zero bihamiltonian structure (2.1) a quasi-trivial deformation, general properties of such
transformations are studied there.
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To describe the genus two deformation of the hierarchy (2.4), we also need to express
the HamiltoniansHβ,q in terms of the new coordinatesuα, we have

Hβ,−1 =
∫
ηβγ u

γ (x)dx +O(ε6),

H1,0 =
∫
u1(x)u2(x)dx − ε2

∫
1

12
u1
x(x)u

2
x(x)dx − ε4

360

∫
u1
xu

2
xxxdx +O(ε6),

H2,0 =
∫ (

1

2
(u1(x))2 + eu

2(x)

)
dx − ε2

∫ (
1

24
(u1
x)

2 + 1

12
(u2
x)

2 eu
2(x)

)
dx

+ε4
∫ (

1

720
(u1

xx)
2+ 1

160
(u2

xx)
2 eu

2(x)+ 1

360
u2

xx(u
2
x)

2 eu
2(x)

)
dx+O(ε6).

(2.19)

Due to (2.5), these Hamiltonians satisfy the following recursion relations:

{uα(x),Hβ,q−1}2 = (q + µβ + 1
2){uα(x),Hβ,q}1 + R

γ
β {uα(x),Hγ,q−1}1,

α, β = 1,2, q ≥ 0, (2.20)

these recursion relations can be solved to yield a unique set of HamiltoniansHβ,q , whose
densities can be expressed in the form

θ̃β,q+1 = θβ,q+1(u)+ ε2θ
(1)
β,q+1(u, ux)+ ε4θ

(2)
β,q+1(u, ux, . . . , ∂

4
xu)+O(ε6),

whereθβ,q(u) are given by (2.2), andθ(1)β,q+1(u, ux), θ
(2)
β,q+1(u, ux, . . . , ∂

4
xu) are polyno-

mials in thex-derivatives ofu1, u2. This is guaranteed by the vanishing of the Poisson
cohomologies for the Poisson structure

{uα(x), uβ(y)} = ηαβδ′(x − y) (2.21)

proved in [9,19] and also independently by Magri. The resulting bihamiltonian hierarchy
is then expressed as

∂uα

∂tβ,q
= {uα(x),Hβ,q}1, α, β = 1,2, q ≥ 0, (2.22)

where the Poisson brackets are defined in (2.17) and (2.18). The right-hand side of the
systems (2.22) have the form

K
(0)
α;β,q(u, ux)+ ε2K

(1)
α;β,q(u, ux, uxx, uxxx)+ ε4K

(2)
α;β,q(u, ux, . . . , ∂

5
xu)+O(ε6),

whereK(l)
α;β,q are polynomials in thex-derivatives ofuα. From our construction we see that,

at the approximation up toε2, this hierarchy coincides with the hierarchy that is satisfied
by the two point correlation functions of theCP1 topological sigma model at genus one
approximation, it is also clear now what is the meaning of its compatibility with the genus
two Virasoro constraints.

In [7,9], it was conjectured that the bihamiltonian structure of the hypothetical integrable
hierarchy for a 2D TFT with all massive perturbations should be a quasi-trivial deformation
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of that of the genus zero bihamiltonian hierarchy, and the bihamiltonian structure has the
form

{uα(x), uβ(y)}i = {uα(x), uβ(y)}(0)i

+
∑
l≥1

2l+1∑
s=0

ε2lP
αβ

i;l,s (u; ux, uxx, . . . , ∂
s
xu)δ

(2l+1−s)(x − y),

i = 1,2, (2.23)

wherePαβi;l,s (u; ux, uxx, . . . , ∂
s
xu) are differential polynomials inuαx , u

α
xx, . . . , and the total

degree of thex-derivatives equalss. In the next two sections, we will present a version of the
Toda lattice hierarchy whose bihamiltonian structure meets the above form and coincides
with that of (2.17) and (2.18) up toε4.

3. The Toda lattice hierarchy

The Toda lattice equation has the form [25]

∂2qn

∂t2
= eqn−1−qn − eqn−qn+1, n ∈ Z, (3.1)

if we denote

g1
n = −∂qn

∂t
, g2

n = qn−1 − qn,

then the Toda lattice Eq. (3.1) can be put into the form

∂g1
n

∂t
= eg

2
n+1 − eg

2
n ,

∂g2
n

∂t
= g1

n − g1
n−1, n ∈ Z. (3.2)

The above system has a bihamiltonian structure which can be found, e.g., in [21]. By
introducing the slow variablest2,0 = εt , x = εn and the new dependent variables

g1(x) = g1
n, g2(x) = g2

n,

we can rewrite the system (3.2) in the following form:

∂g1

∂t2,0
= 1

ε
(eg

2(x+ε) − eg
2(x)),

∂g2

∂t2,0
= 1

ε
(g1(x)− g1(x − ε)). (3.3)

The reason to uset2,0 as the time variable for the above system will be clear in the
next section, we are also to usetβ,q as the time variables for the Toda lattice hierarchy
which will be defined soon. In our notation, the bihamiltonian structure for (3.3) has the
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form [7,21]

{g1(x), g1(y)}1 = {g2(x), g2(y)}2 = 0,

{g1(x), g2(y)}1 = 1

ε
(δ(x − y + ε)− δ(x − y)),

{g1(x), g1(y)}2 = 1

ε
(eg

2(x+ε)δ(x − y + ε)− eg
2(x)δ(x − y − ε)),

{g1(x), g2(y)}2 = 1

ε
g1(x)(δ(x − y + ε)− δ(x − y)),

{g2(x), g2(y)}2 = 1

ε
(δ(x − y + ε)− δ(x − y − ε)). (3.4)

The above bihamiltonian structure can be expanded in power series ofε, and the coefficients
of ε0 give precisely the genus zero bihamiltonian structure (2.1). In the next section, we
will perform a Miura transformation to convert it into the form of (2.23).

The first Poisson structure has two Casimirs

h1,−1 =
∫
g2(x)dx, h2,−1 =

∫
g1(x)dx. (3.5)

We now proceed to define the Toda lattice hierarchy by using the recursion relations

{gα(x), hβ,q−1}2 = (q + µβ + 1
2){gα(x), hβ,q}1 + R

γ
β {gα(x), hγ,q−1}1,

α, β = 1,2, q ≥ 0, (3.6)

whereR is define in (2.6). From the Casimirh2,−1 the above recursion relations generate
one branch of our Toda lattice hierarchy with Hamiltoniansh2,q , this branch of the hierarchy
is usually referred to as the Toda lattice hierarchy in the literature (see, e.g., [21] and the
remark in the end of this section). The first flow

∂gα

∂t2,0
= {gα(x), h2,0}1

with Hamiltonian

h2,0 =
∫ [

1

2
(g1)2(x)+ eg

2(x)

]
dx (3.7)

is just the Toda lattice equations (3.3). Since{gα(x), h1,−1}2 = 0, we no longer able to start
from the Casimirh1,−1 to generate the second branch of the hierarchy, instead, we have to
start the recursion procedure from the Hamiltonianh1,0. Before giving the definition ofh1,0,
let us introduce some notations which will be used in the definition of the second branch of
the Toda lattice hierarchy and also in the next section. Denote byA,B the shift operators

A(x; ε)f (x) := f (x + ε)− f (x) =
∑
k≥1

εk

k!
∂kxf (x), (3.8)

B(x; ε)f (x) := −A(x; ε)A(x; −ε)f (x) = −A(x; −ε)A(x; ε)f (x)
= f (x + ε)+ f (x − ε)− 2f (x) =

∑
k≥1

2ε2k

(2k)!
∂2k
x f (x) (3.9)
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for an arbitrary smooth functionf (x). In the notation of these two operators, we indicate
explicitly the variablex to which the shift operation takes place, this is because we will
apply these operators on functions with more then one variables later, for example, when
the operatorA(y, ε) is applied to the functionf (x, y), we get

A(y, ε)f (x, y) = f (x, y + ε)− f (x, y) =
∑
k≥1

εk

k!
∂kyf (x, y).

We specify the inverse of the operatorsA andB by

A−1(x; ε)∂xf (x) = 1

ε

∑
k≥0

akε
k∂kxf (x), (3.10)

B−1(x; ε)∂2
xf (x) = 1

ε2

∑
k≥1

bkε
2k∂2k

x f (x), (3.11)

where the coefficientsak, bk are defined by

a0 = 1, a1 = −1

2
, ak = −

k∑
l=1

ak−l
(l + 1)!

, b0 = 1, b1 = − 1

12
,

bk = −
k∑
l=1

2bk−l
(2l + 2)!

, k ≥ 2. (3.12)

The coefficientsak have the property

a2l+1 = 0, l ≥ 1, (3.13)

this can be seen from the identity

εA−1(x; ε)∂xf (x)− (−ε)A−1(x,−ε)∂xf (x) = 2
∑
l≥0

a2l+1ε
2l+1∂2l+1

x f (x),

since the left-hand side of the above identity equals

−εB−1(x; ε)(A(x; ε)∂xf+A(x; −ε)∂xf ) = −εB−1(x; ε)B(x, ε)∂xf (x) = −ε∂xf.
Now, we define the Hamiltonian

h1,0 =
∫
εg2(x)A−1(x; ε)∂xg1(x)dx =

∫
g2(x)

∑
k≥0

akε
k∂kxg

1(x)dx, (3.14)

and define the Hamiltonianshβ,q , β = 1,2, q ≥ 1 by using the recursion relation (3.6).
The existence of these Hamiltonians is again ensured by the vanishing of the Poisson coho-
mologies of the Poisson structure (2.21), their densities can be represented by differential
polynomials in thex-derivatives ofg1, g2 and can be expanded in a power series ofε.
These Hamiltonians are uniquely determined by the condition that in the density ofhβ,q ,
after being expanded in power series ofε, the leading term coincides withθβ,q that is defined
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in (2.2). We can require this condition because when expanded as power series ofε, the
leading terms of the bihamiltonian structure (3.4) coincide with the bihamiltonian structure
(2.1). For example, we have

h1,1 =
∫ 
eg

2(x)
∑
k≥0

(−ε)kak∂kxg2(x)+ 1

2
g2(x)

∑
k≥0

εkak∂
k
x (g

1(x))2

+g1(x)
∑
k≥0

εkak∂
k
xg

1(x)


 dx − 2h2,0,

h2,1 =
∫ [

1

6
(g1(x))3 + 1

2
g1(x)(eg

2(x+ε) + eg
2(x))

]
dx. (3.15)

We define the flows of the Toda lattice hierarchy by the following systems:

∂gα

∂tβ,q
= {gα(x), hβ,q}1, α, β = 1,2, q ≥ 0, (3.16)

where the Poisson bracket is defined in (3.4). Thet2,0 flow is just the Toda lattice equations
(3.3), and thet1,0 flow is the shift alongx, i.e.

∂gα

∂t1,0
= ∂xg

α.

Proposition 3.1. The flows of the Toda lattice hierarchy commute with each other.

Proof. We use Magri’s standard procedure [24] to prove the commutativity of the flows of
the Toda lattice hierarchy. By using the recursion relations (3.6), we have

{h2,p, h2,q}1 =
(
p + q + 2

q + 1

)
{h2,p+q+1, h2,−1}1 = 0, (3.17)

here the last equality is due to the fact thath2,−1 is a Casimir of the first Poisson bracket.
Similarly, by using (3.6) and (3.17), we get

{h1,p, h2,q}1 =
(
p + q + 1

p

)
{h1,p+q+1, h2,−1}1 = 0, (3.18)

by using this identity and again the recursion relation (3.6), we get(
p + q

q

)−1

{h1,p, h1,q}1 = {h1,p+q, h1,0}1 =
∫
δh1,p+q
δgγ (x)

{gγ (x), h1,0}1 dx

=
∫
δh1,p+q
δgγ (x)

∂xg
γ (x)dx = 0. (3.19)

The commutativity of the flows (3.16) follows immediately from the Jacobi identity for the
first Poisson bracket and the commutativity of the Hamiltonians. �
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Remark. As we already mentioned, the branch of the Toda lattice hierarchy (3.16) that
consists of the systems with flows∂/∂t2,q , q ≥ 0 is usually called the Toda lattice hi-
erarchy in the literature [21], in the discrete form these systems have the following Lax
representations:

∂L

∂t̃2,p
= 1

(p + 1)!
[(Lp+1)+, L], p ≥ 0,

where the time variables̃t2,p is related tot2,p throught2,p = εt̃2,p, and the Lax operator
L is given by

L = Λ+ g1
n + eg

2
nΛ−1

with Λ being the shift operator that acts on the discrete variablen, i.e.,

Λfn = fn+1,

and the operator(Lp+1)+ is obtained fromLp+1 by dropping those terms inLp+1 with
negative powers ofΛ, e.g., we have(L)+ = Λ+ g1

n.

4. A Miura transformation relating the Toda lattice hierarchy to the CP1 topological
sigma model

Define the following Miura transformation:

w1(x)= εA−1(x; ε)∂xg1(x) =
∑
k≥0

akε
k∂kxg

1(x),

w2(x)= ε2B−1(x; ε)∂2
xg

2(x) =
∑
k≥0

bkε
2k∂2k

x g
2(x), (4.1)

whereak, bk are defined in (3.12). We now transform the bihamiltonian structure of the
Toda lattice hierarchy (3.16) into these new coordinates to establish its relation to that of
theCP1 topological sigma model given in Section 2.

Proposition 4.1. In the new coordinatesw1, w2, the bihamiltonian structure(3.4)has the
expression

{w1(x), w1(y)}1 = {w2(x), w2(y)}1 = 0,

{w1(x), w2(y)}1 =
∑
k≥0

(1 − 2k)a2kε
2kδ(2k+1)(x − y) =

∑
k≥0

bkε
2kδ(2k+1)(x − y),

{w1(x), w1(y)}2 = 2 eg
2(x)δ′(x − y)+ eg

2(x)g2
x(x)δ(x − y)

+
∑
m≥1

ε2ma2m

[
2 eg

2(x)δ(2m+1)(x − y)+ (2m+ 1)∂x(e
g2(x))

×δ(2m)(x − y)+
2m−2∑
l=0

(
2m
l

)
∂2m−l
x (eg

2(x))δ(l+1)(x − y)

]
,
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{w1(x), w2(y)}2 =w1(x)δ′(x − y)

+
∑
k≥1

a2kε
2k

[
w1(x)δ(2k+1)(x − y)

−
2k∑
l=1

(
2k
l

)
∂l−1
x w1(x)δ(2k+2−l)(x − y)

]
,

{w2(x), w2(y)}2 = 2
∑
k,m≥0

a2kbmε
2m+2kδ(2m+2k+1)(x − y), (4.2)

where the variableg2(x) is expressed in terms ofw2 through

g2 =
∑
k≥0

2

(2k + 2)!
ε2k∂2k

x w
2. (4.3)

Proof. Since the Miura transformation (4.1) is linear, the derivation of the bihamiltonian
structure in the new coordinates is straightforward. We show as example the derivation of
the formula for{w1(x), w1(y)}2, by using (4.1) we have

{w1(x), w1(y)}2 = ε2A−1(x; ε)A−1(y; ε)∂x∂y{g1(x), g1(y)}2

= εA−1(x; ε)A−1(y; ε)∂x∂y [A(x; ε)(eg2(x)δ(x − y))

−eg
2(x)A(y, ε)δ(x − y)]

= εA−1(y; ε)∂x [eg2(x)∂yδ(x − y)] − εA−1(x; ε)∂x [eg2(x)∂yδ(x − y)]

= ∂x


∑
k≥0

(−1)kakε
k eg

2(x)δ(k)(x − y)


+

∑
k≥0

akε
k∂kx [eg

2(x)δ′(x − y)]

= 2 eg
2(x)δ′(x − y)+ eg

2(x)g2
x(x)δ(x − y)+

∑
m≥1

ε2ma2m

×
[

2 eg
2(x)δ(2m+1)(x − y)+ (2m+ 1)∂x(e

g2(x))δ(2m)(x − y)

+
2m−2∑
l=0

(
2m
l

)
∂2m−l
x (eg

2(x))δ(l+1)(x − y)

]
,

here the last equality holds true due to (3.13). �

By using the above proposition, a simple calculation yields the following.

Proposition 4.2. After substitutingg2 by (4.3) and expanding into power series ofε, the
bihamiltonian structure(4.2)has the form(2.23)and, moreover, by identifyingwα withuα,
this bihamiltonian structure coincides with the bihamiltonian structure given in(2.17) and
(2.18)for the CP1 topological sigma model at the approximation up toε4.
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Under the Miura transformation (4.1), the Toda lattice hierarchy (3.16) is transformed to

∂w1

∂tβ,q
= {w1(x), hβ,q}1 = ∂

∂x

δhβ,q

δg2
,

∂w2

∂tβ,q
= {w2(x), hβ,q}1 = ∂

∂x

∑
k≥0

akε
k∂kx

δhβ,q

δg1
, (4.4)

where the Poisson bracket is given in (4.2),hβ,q are defined in Section 3, and the right-hand
side of the above equations can be easily represented by the new coordinateswα through
the substitution of (4.3) and of

g1 =
∑
k≥0

εk

(k + 1)!
∂kxw

1.

In the new coordinates, the Hamiltonianshβ,q satisfy the recursion relation

{wα(x), hβ,q−1}2 = (q + µβ + 1
2){wα(x), hβ,q}1 + R

γ
β {wα(x), hγ,q−1}1,

α, β = 1,2, q ≥ 0, (4.5)

which have the same form of (2.20) if we identifywα withuα, so due to the above proposition
and our definition of the Hamiltonianshβ,q in the last section, we have the following
corollary.

Corollary 4.1. Under the identification ofwα with uα, the Toda lattice hierarchy(4.4)
coincides with the bihamiltonian hierarchy(2.22)satisfied by the two point approximation of
the CP1 topological sigma model at the genus two approximation(i.e., at the approximation
up toε4).

Let us write down in the coordinateswα the first two sets of flows of the Toda lattice
hierarchy:

∂wα

∂t1,0
= ∂xw

α,
∂w2

∂t2,0
= ∂xw

1,

∂w1

∂t2,0
= ∂x eg

2 = ∂x exp


∑
k≥0

2

(2k + 2)!
ε2k∂2k

x w
2


 ,

∂w1

∂t1,1
= ∂x


∑
k≥0

ε2ka2k(∂
2k
x eg

2 + eg
2
∂2k
x g

2)+ 1
2P(w

1, w1)− 2 eg
2


 ,

∂w2

∂t1,1
= ∂x


P(w1, w2)+ 2

∑
k≥1

ε2ka2k∂
2k
x w

1


 ,
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∂w1

∂t2,1
= ∂x


eg

2∑
k≥0

ε2k

(2k + 1)!
∂2k
x w

1


 ,

∂w2

∂t2,1
= ∂x


1

2
P(w1, w1)+

∑
k≥0

ε2ka2k∂
2k
x eg

2


 , (4.6)

where

P(wα,wβ) =
∑
k≥0

2k∑
m=0

2k−m∑
l=0

a2k−m−lε2k∂2k−m−l
x

(
(∂mx w

α)(∂lxw
β)

(m+ 1)!(l + 1)!

)
.

andg2 is related tow2 through (4.3).

5. Concluding remarks

We have shown that, at the approximation up toε4, the bihamiltonian Toda lattice hi-
erarchy (4.4) coincides with the bihamiltonian hierarchy that is satisfied by the two point
correlation functions of theCP1 topological sigma model at genus two approximation, here
the genus two approximation of theCP1 topological sigma model is obtained by assuming
the validity of the genus two Virasoro constraints and the conjecture on the form of the
genus two free energy (2.15). To prove this relation between the Toda lattice hierarchy and
theCP1 topological sigma model, we show that at the approximation up toε4 the bihamil-
tonian structure (4.2) of the Toda lattice hierarchy is in fact a quasi-trivial deformation of
the genus zero bihamiltonian structure (2.1). We believe that this quasi-triviality property
of the bihamitonian structure (4.2) of the Toda lattice hierarchy is also valid in full genera,
to say more explicitly, there should exist a quasi-Miura transformation of the form

wα = vα + ηαγ
∑
g≥1

ε2g ∂
2Fg(v, ∂xv, . . . , ∂

3g−2
x v)

∂t1,0∂tγ,0

such that the genus zero bihamiltonian structure (2.1) is transformed to (4.2), here the genus
zero flows∂vα/∂tβ,q are needed in the expression of the quasi-Miura transformation. This
quasi-triviality property is in fact quite strong, we believe that it determines the quasi-Miura
transformation (thus all the functionsFg) uniquely, and if this is realized, then the genusg
free energy of theCP1 topological sigma model could be calculated from the knowledge
of the genus zero correlation functions through

Fg(t) = Fg(v, ∂xv, . . . , ∂
3g−2
x v)|∂kx v=∂kx v(0)(t),

wherev(0)(t) is given by the genus zero correlation functions (2.7). The notion of quasi-trivial
deformations of a bihamiltonian structure is introduced and its important properties are given
in [9], examples of quasi-trivial deformations of the genus zero bihamiltonian structures
defined on the loop space of any generic two-dimensional Frobenius manifold are given
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at the genus two approximation there, these quasi-trivial deformations are proved to be
compatible with the genus two Virasoro constraints.

Finally, we remark that in [7] a linear Miura transformation that is different from that
of (4.1) was given, although it does transform the bihamiltonian structure (3.4)–(4.2) at
the approximation up toε3, it is in fact not able to be corrected to become a linear Miura
transformation between the two bihamiltonian structures at the approximation up toε4.
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